Science, Homosexuality, and the Church

The discussion about what roles nature and nurture play in sexual orientation is a long-standing one. Those interested in identifying the etiology and causes of homosexuality pay close attention to research findings from varied disciplines: psychology, anthropology, sociology, and the medical sciences. Many took special note, then, when neurobiologist Simon LeVay recently reported that his findings support the theory that homosexuality, or at least its predisposition, is rooted in biology (Simon LeVay, "A Difference in Hypothalamic Structure Between Heterosexual and Homosexual Men," Science, Vol. 253, pp. 1034-7).

Generally speaking, the principal theories of the root causes of homosexuality—i.e., homosexuality is innate (biologically or genetically determined), or it is acquired as a result, for example, of a faulty childhood gender identification—are frequently associated with their respective ethical evaluations. Those who believe in the former theory, for example, usually conclude that a homosexual orientation and its sexual expression are a good or at least morally neutral sexual option. Those who hold the latter theory sometimes contend that, because homosexual orientation is a psychosexual dysfunction, its genital expression is a moral deviation. In light of these opinions, it is not surprising that, after LeVay's published report, some questioned if and how his hypothesis might impact the Church's moral teaching on homosexuality.

In this article, I would like to critique the speculation that this latest conclusion, if proved definitive, will necessitate a revision in the Church's teaching on homosexuality. To accomplish this objective, I will, first, give a synopsis of the nature and results of LeVay's research, second, summarize how the Church describes the theological basis for her pastoral stance toward persons that are homosexual and, third, consider whether and how the former will affect the latter.

LeVay's Study

At the Salk Institute for Biological Studies in San Diego, LeVay examined postmortem brain tissue from 41 subjects. Nineteen were homosexual men (all died of AIDS-related complications), 16 were presumed heterosexual men (6 died of AIDS; ten died from other causes), and 6 were presumed heterosexual women (1 died of AIDS, 5 died from other causes). LeVay concentrated his study on the anterior hypothalamus which forms the floor and part of the wall of the third ventricle of the brain and is involved in the regulation of typical sexual behavior. In particular, he analyzed four cell groups in the anterior hypothalamus which are labelled Interstitial Nuclei of the Anterior Hypothalamus or INAH 1, 2, 3, and 4 respectively.

In prior research using male and female postmortem brain tissue, two nuclei of the anterior hypothalamus— INAH 2 and 3—were found to be twice the size in the male as in the female subjects. From this, it was conjectured that hypothalamic structure was dimorphic (two distinct forms) in accordance with the sex of the individual.

LeVay, however, had another scientific "hunch" about the meaning of the discovery of hypothalamic dimorphism.

(continued on page 2)
I tested the idea that one or both of these nuclei exhibit a size dimorphism, not with sex, but with sexual orientation. Specifically, I hypothesized that INAH 2 or INAH 3 is large in individuals sexually oriented toward women (heterosexual men and homosexual women). Because tissue from homosexual women could not be obtained, however, only that part of the hypothesis relating to sexual orientation in men could be tested (ibid., p.1035).

The preliminary results of his investigation showed that his hunch may be right. One hypothalamic nucleus (INAH 3) was half the size in the homosexual men he examined as compared to its size in the heterosexual male subjects. The other three cell clusters (INAH 1, 2, and 4) showed no difference between the homosexual subjects and the heterosexual subjects. INAH 3 appeared, therefore, to be dimorphic not with sex but with sexual orientation. Consequently, LeVay tentatively concluded that "...sexual orientation in humans is amenable to study at the biological level, ..." (ibid., p.1036).

LeVay was careful to underscore the inconclusive nature of his findings: "In particular, the results do not allow one to decide if the size of INAH 3 in an individual is the cause or consequence of that individual's sexual orientation, or if the size of INAH 3 and sexual orientation covary under the influence of some third, unidentified variable" (ibid.).

The Church's Theological Basis for Pastoral Approach

In the Letter to the Bishops of the Catholic Church on the Pastoral Care of Homosexual Persons (1986), the Congregation for the Doctrine of the Faith describes not only the appropriate pastoral attitude toward homosexual persons but also elucidates the theological underpinnings for this posture.

In this document, the Church assures its readers that it recognizes and empathizes with the suffering associated with homosexuality. At the same time, however, the Church stresses that this suffering will be "...intensified by error and lightened by truth" (ibid., #18). To teach the truth with love, then, is the motto to which anyone in the Church who ministers to homosexual persons should be loyal. But what does such a ministry include?

The first aspect of genuine pastoral care of the homosexual person is teaching the truth about the meaning of human sexuality and marriage. That entails being conversant with the following theological overview.

God created us in His image. He created us sexual beings, male or female, as complementary halves of the whole we call humanity or humanness. The fullness of humanity that is realized in the coming together of male and female is symbolic of the inner unity of God, who is the fulness of Being. That man and woman were meant to complete one another is not only naturally inscribed in the physical design of their bodies but is also Divinely affirmed in the words of the first man in the book of Genesis. "This one, at last, is bone of my bone and flesh of my flesh;..."(Gen. 2:23).

Human genital sexuality is a gift that is to be expressed and deepened in a specific context: the "one flesh" of marriage. Only in this context—where a man and woman permanently pledge their faithful love—can the unitive and procreative goods of marital love be properly fostered. It follows, then, that the union of male and female in sexual intercourse within marriage is the norm for the fulfillment of human complementariness on the genital plane.

In light of the meaning of human sexuality and marriage, the objective truth about the ethics of homosexuality can then be understood. Genital sexual relations between homosexual persons do not effect the completion of a male and a female; such relations do not take place within the permanent commitment of a heterosexual marriage, and they cannot, therefore, be open to the unitive and procreative goods that are the ends of marital sexual love. Homosexual genital behavior, even in a so-called monogamous relationship, falls outside God's design for the nature and purpose of human sexuality and its rightful expression within marriage.

With the use of reason enlightened by faith, then, the Church draws two principal ethical conclusions about homosexuality. First, the homosexual condition or orientation is not a sin (the person is not morally culpable for being in or having this condition). Objectively speaking, however, because the homosexual orientation is "...a more or less strong tendency oriented toward an intrinsic moral evil..." (ibid., #13), it is an objective disorder. Second, the living out of this sexual orientation in genital sexual activity is an objective moral evil (ibid., #13). It follows, then, that Catholic pastors who give counsel to homosexuals, while sensitive to the impossibility of judging an individual's personal culpability, must not compromise the Church's objective moral evaluation of homosexual behavior.

Conclusion

Having reviewed LeVay's findings as well as the theological basis of the Church's pastoral ministry to homosexuals, we are ready to answer our final question: How will the former affect the latter?

From the presentation of the doctrinal core of a genuine pastoral stance toward homosexual persons given above, one can see that the Church's evaluation of homosexual orientation and homosexual activity prescinds from a consideration of the etiology of homosexuality. Whether it is acquired or innate does

Ethics and Medics is a publication of the Pope John Center and is sent to its Subscribing Members, at the annual subscription rate of $15. (12 issues). For subscription information, please write: The Pope John Center, 166 Forbes Road, Braintree, Mass. 02184; Telephone (617) 848-6965/Publisher: the Rev. Russell E. Smith, S.T.D.; Editor: the Rev. Albert S. Monczewski, O.P., Ph.D/Contents copyright © 1992 by the Pope John XXIII Medical/Moral Research and Education Center. All rights reserved.
Correcting Brain Defects

Perseverance sometimes pays off. Opposition to the use of aborted fetal tissue has been strong and persistent. A federal government report notes that:

In March 1988, a moratorium was imposed on the use of human fetal tissue from induced abortions for transplantation until the ethical issue surrounding this use could be adequately studied. Nineteen months later it was initiated, the moratorium was extended indefinitely by the new Secretary of Health and Human Services (U.S. Congress, Office of Technology Assessment, Neural Grafting: Repairing the Brain and Spinal Cord, OTA-BA-462 [Washington, DC: Government Printing Office, September 1990, p.171]).

Nonetheless, pressure to remove the moratorium has increased. For instance, several government panels (an example is the NIH Human Fetal Tissue Transplantation Research Panel [1988]) have looked into this issue and have recommended that the ban of fetal research in the area of brain tissue transplants be lifted. In spite of strong resistance by one or more individuals within the respective panels or committees, the majorities in each of these panels or committees voted for the recommendation. Those in the minority were convinced that such use of aborted fetal tissue, while done perhaps with a noble intention of aiding the sick, was in effect complicity with abortion. In addition, some held that as long as aborted tissues were in plentiful supply and their use approved by government agencies, it was not likely that monies would be readily available to develop other sources of the neurotransmitters necessary to correct such brain disorders as Parkinson's disease and Huntington's disease, both being devastating which attack persons at the adult stage of life. As of early April 1992, efforts to lift the moratorium on the use of human fetal tissue from induced abortions succeeded: the United States Senate voted on April 2, 1992 to remove the moratorium.

Alternative Sources of Neurotransmitters

It should be noted that the moral objection to the use of fetal tissue is with reference to electively aborted tissue. There is no basic moral objection to the use of tissue from spontaneously aborted human fetus. With widespread notification and cooperation it is likely that a sufficient supply of useable fetal tissue could be obtained. Because of spontaneously aborted fetus often represents a fetus which has some kind of major defect, there may be problem in using tissues or cells from such an individual. Nonetheless, the use of spontaneously aborted human fetus as a source of fetal tissue for the purpose of transplantation should not dismissed out of hand but should be carefully reviewed.

However, some recent discoveries are adding a new dimension to the picture. It may not be necessary to use fetal brain tissue after all. These new discoveries need to be taken in conjunction with each other to appreciate their application. One discovery is that fetal tissue from one species of animal can be used in another. Thus, it was reported by Ole Isacson and his team at McLean Hospital in Belmont, MA (see Science News, November 16, 1991, p.308) that monkeys treated with a drug which resulted in Huntington's disease-like disordered movements, could have the abnormality corrected with nerve cells taken from special areas of the fetal rat brain. These cells secrete the neurotransmitter necessary for the particular brain function that controls movements. An immunosuppressive drug was used concurrently to prevent the monkey brain from rejecting the rat brain cells as foreign intruders.

Another approach to overcoming the rejection of foreign cells is reported in the same article. In this case the research involved the use of a permeable plastic

(continued on page 4)